Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction.
نویسندگان
چکیده
Nitric oxide (NO) is an important modulator of cardiac performance and left ventricular (LV) remodeling after myocardial infarction (MI). We tested the effect of cardiomyocyte-restricted overexpression of one NO synthase isoform, NOS3, on LV remodeling after MI in mice. LV structure and function before and after permanent LAD coronary artery ligation were compared in transgenic mice with cardiomyocyte-restricted NOS3 overexpression (NOS3-TG) and their wild-type littermates (WT). Before MI, systemic hemodynamic measurements, echocardiographic assessment of LV fractional shortening (FS), heart weight, and myocyte width (as assessed histologically) did not differ in NOS3-TG and WT mice. The inotropic response to graded doses of isoproterenol was significantly reduced in NOS3-TG mice. One week after LAD ligation, the infarcted fraction of the LV did not differ in WT and NOS3-TG mice (34+/-4% versus 36+/-12%, respectively). Four weeks after MI, however, end-systolic LVID was greater, and fractional shortening and maximum and minimum rates of LV pressure development were less in WT than in NOS3-TG mice. LV weight/body weight ratio was greater in WT than in NOS3-TG mice (5.3+/-0.2 versus 4.6+/-0.5 mg/g; P<0.01). Myocyte width in noninfarcted myocardium was greater in WT than in NOS3-TG mice (18.8+/-2.0 versus 16.6+/-1.6 microm; P<0.05), whereas fibrosis in noninfarcted myocardium was similar in both genotypes. Cardiomyocyte-restricted overexpression of NOS3 limits LV dysfunction and remodeling after MI, in part by decreasing myocyte hypertrophy in noninfarcted myocardium.
منابع مشابه
Low-dose simvastatin improves survival and ventricular function via eNOS in congestive heart failure.
3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors increase endothelial nitric oxide synthase (eNOS) activity by multiple mechanisms. We previously reported that genetic overexpression of eNOS improves survival and cardiac function in congestive heart failure (CHF). In the present study, we tested the hypothesis that low-dose treatment with an 3-hydroxy-3-methylglutaryl coenzyme A reduc...
متن کاملNatakalim improves post-infarction left ventricular remodeling by restoring the coordinated balance between endothelial function and cardiac hypertrophy
Endothelial dysfunction can lead to congestive heart failure and the activation of endothelial ATP-sensitive potassium (K(ATP)) channels may contribute to endothelial protection. Therefore, the present study was carried out to investigate the hypothesis that natakalim, a novel K(ATP) channel opener, ameliorates post-infarction left ventricular remodeling and failure by correcting endothelial dy...
متن کاملTargeted cardiac overexpression of A20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction.
BACKGROUND A20 was originally characterized as a tumor necrosis factor-inducible gene in human umbilical vein endothelial cells. As an inhibitor of nuclear factor-kappaB signaling, A20 protects against apoptosis, inflammation, and cardiac hypertrophy. In the present study, we tested the hypothesis that cardiac-specific overexpression of A20 could protect the heart from myocardial infarction. ...
متن کاملCardiomyocyte-specific overexpression of NO synthase-3 protects against myocardial ischemia-reperfusion injury.
OBJECTIVE The protective effect of NO synthase-3 (eNOS)-derived NO in limiting myocardial ischemia-reperfusion (MI-R) injury is well established. We reported previously that systemic genetic overexpression of eNOS attenuates MI-R injury. The purpose of the current study was to investigate tissue-specific genetic overexpression of the human eNOS gene. METHODS AND RESULTS To accomplish this, we...
متن کاملUpregulation of adrenomedullin and its receptor components during cardiomyocyte hypertrophy induced by chronic inhibition of nitric oxide synthesis in rats.
Adrenomedullin may provide a compensatory mechanism to attenuate left ventricular hypertrophy (LVH). Nitric oxide synthase inhibition, induced by chronic administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) to rats, induces cardiac hypertrophy in some, but not all cases; there are few reports of direct assessment of cardiomyocyte parameters. The objective was to characterize hypert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 94 9 شماره
صفحات -
تاریخ انتشار 2004